
J
H
E
P
0
9
(
2
0
0
6
)
0
1
1

Published by Institute of Physics Publishing for SISSA

Received: July 14, 2006

Accepted: August 1, 2006

Published: September 6, 2006

Gauging CSO groups in N = 4 supergravity

Mees de Roo and Dennis B. Westra

Centre for Theoretical Physics

Nijenborgh 4, 9747 AG Groningen, The Netherlands

E-mail: m.de.roo@rug.nl, d.b.westra@rug.nl

Sudhakar Panda

Harish-Chandra Research Institute

Chatnag Road, Jhusi, Allahabad 211019, India

E-mail: panda@mri.ernet.in

Abstract: We investigate a class of CSO-gaugings of N = 4 supergravity coupled to 6

vector multiplets. Using the CSO-gaugings we do not find a vacuum that is stable against

all scalar perturbations at the point where the matter fields are turned off. However, at

this point we do find a stable cosmological scaling solution.

Keywords: Cosmology of Theories beyond the SM, Supergravity Models, Extended

Supersymmetry.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep092006011/jhep092006011.pdf

mailto:m.de.roo@rug.nl
mailto:d.b.westra@rug.nl
mailto:panda@mri.ernet.in
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
6
)
0
1
1

Contents

1. Introduction 1

2. The scalars of N = 4 supergravity 2

3. CSO gaugings 4

3.1 Lie algebras of the type cso(p, q, r) 5

3.2 Choosing the SU(1, 1)-angles 6

3.3 The embedding of CSO-algebras in SO(6, 6) 6

3.4 Proof of the lemma 7

4. The potential and its derivatives 11

4.1 The potential 11

4.2 The derivatives of the potential 12

5. Analysis of the potentials of CSO-gaugings 13

6. Cosmological scaling solutions 14

7. Conclusions 15

A. SU(1, 1) scalars and angles 16

B. Structure constants 17

1. Introduction

Gauged supergravity theories have solutions that may provide a stringy explanation of

cosmological problems. An interesting example is the fact that gauged N = 2 supergravity

has stable De Sitter solutions [1 – 4]. A second class of cosmologically interesting solutions

are the so-called scaling solutions, which might play a role in explaining the accelerating

expansion of the universe (see [5, 6] and references therein).

In recent work we have investigated the properties of gauged N = 4 supergravity in

four dimensions with the aim of constructing gaugings which lead to a scalar potential

which allows positive extremum with nonnegative mass matrix [7, 8]. No such extrema

were found. In the present paper we extend this work to contracted groups of the CSO

type, and extend the search to include cosmological scaling solutions.

In [8] we limited ourselves to semisimple gauge groups G with dim G ≤ 12. Then

the field content of the four-dimensional theory corresponds to that of the N = 1, d = 10
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supergravity, which puts the analysis within a string theory context. In [9], we performed a

group manifold reduction of the dual version of N = 1, d = 10 supergravity, and compared

the result with four-dimensional gauged supergravity. For the group manifold SO(3)×SO(3)

the resulting gauge group is CSO(3, 0, 1)×CSO(3, 0, 1). We showed that the effect of this

reduction, including nonzero 3-form fluxes, can also be obtained by directly gauging the

four-dimensional N = 4 theory with the corresponding CSO group.

In this paper we address CSO-gaugings of N = 4 supergravity with dim G ≤ 12.

CSO(p, q, r) is a contraction of a special orthogonal group: for r = 0 they reduce to

SO(p, q), if r 6= 0 there is an abelian subalgebra of dimension r(r−1)/2. To find consistent

CSO-gaugings we need to prove a lemma on invariant metrics on CSO-algebras. The main

conclusion of the lemma is that only the CSO(p, q, r)-groups with p+ q + r = 4 (we take

r > 0 in order to have a truly contracted group) give viable gaugings.

We do not present the most general CSO-gauging of N = 4 supergravity. As al-

ready mentioned we restrict to 6 vector multiplets. In reference [10] the most general

gaugings of N = 4 supergravity are discussed and characterized by a set of parameters

{ξαM , fαKLM ; α = 1, 2 ; 1 ≤ K,L,M ≤ 12} that need to satisfy a set of constraints. Our

gaugings correspond to the subset of gaugings where ξαM = 0.

The paper is organized as follows. In section 2 we discuss the scalar fields of N = 4

matter-coupled supergravity. In section 3 we discuss the gauging of N = 4 supergravity

coupled to 6 vector multiplets; we briefly review the concept of CSO-groups, or actually

their Lie algebras cso(p, q, r), present the lemma on invariant metrics on cso-algebras and

discuss the SU(1, 1)-angles. In section 4 we review some results from [8] and in section 5 we

apply this to the CSO-gaugings. As in the case of semisimple groups we do not obtain a

positive extremum with nonnegative mass matrix. In section 6 we show that a cosmological

scaling solution exists in N = 4 CSO gauged supergravity.

2. The scalars of N = 4 supergravity

We consider gauged N = 4 supergravity coupled to n vector multiplets [11]. The scalars

parameterize an SO(6, n)/SO(6)×SO(n)×SU(1, 1)/U(1) coset and can be split in the 6n

scalars of the matter multiplets, which parameterize SO(6, n)/SO(6) × SO(n)-coset, and

the two scalars of the supergravity multiplet, which parameterize an SU(1, 1)/U(1)-coset.

The SU(1, 1)-scalars from the supergravity multiplet are denoted φα, α = 1, 2, and

take complex values. When we define φ1 = (φ1)∗ and φ2 = −(φ2)∗, the constraint that

restrict them to the SU(1, 1)/U(1)-coset reads

φαφα = |φ1|2 − |φ2|2 = 1 . (2.1)

A convenient parametrization of the SU(1, 1)-scalars is obtained by using the U(1)-sym-

metry to take φ1 real:

φ1 =
1√

1− r2
, φ2 =

reiϕ√
1− r2

. (2.2)
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The kinetic term of the SU(1, 1)-scalars then becomes

Lkin(r, ϕ) = − 1

(1− r2)2

(
∂µr∂

µr + r2∂µϕ∂
µϕ
)
. (2.3)

The SO(6, n)-scalars from the matter multiplets are denoted Za
R, a = 1, . . . , 6 and

R = 1, . . . , 6 + n, and they take real values. The constraint that restricts the SO(6, n)-

scalars to the SO(6, n)/SO(6)× SO(n)-coset is

Za
RηRSZb

S = −δab , (2.4)

where ηRS are the components of the invariant metric in the vector representation of

SO(6, n) in a basis such that

η = diag(−1, . . . ,−1,+1, . . . ,+1), (2.5)

with six negative entries and n positive entries. Hence the scalars Za
R can be viewed as the

upper six rows of SO(6, n)-matrix. We define ZRS = Za
RZa

S and note that δR
S + 2ZR

S is

an SO(6, n)-matrix, where the indices are raised and lowered with the metric ηRS .

In this paper we restrict ourselves to n = 6, which makes contact with string theory.

From [12] we find a convenient parametrization of the coset SO(6, 6)/SO(6) × SO(6); we

write Za
R = (X,Y )a

R, where X and Y are 6× 6-matrices and put

X = 1
2

(
G+G−1 +BG−1 −G−1B −BG−1B

)
,

Y = 1
2

(
G−G−1 −BG−1 −G−1B −BG−1B

)
,

(2.6)

where G is an invertible symmetric 6× 6-matrix and B is an antisymmetric 6× 6-matrix.

It is convenient to split the indices R,S, . . . of ηRS in A,B, . . . = 1, . . . , 6, (ηAB = −δAB)

and I, J, . . . = 7, . . . , 12, (ηIJ = +δIJ). Hence Za
A = Xa

A and Za
I = Ya

I−6. We define

a 6 × 6-matrix containing the independent degrees of freedom of the SO(6, 6)-scalars by

P = G+B and denote its components by Pab, where 1 ≤ a, b,≤ 6. The kinetic term of the

independent scalars Pab then reads:

Lkin(Pab) = −1
2∂µPab∂

µPab . (2.7)

There is a certain freedom in coupling the vector multiplets: for each multiplet, labelled

by R, we can introduce an SU(1, 1)-element, of which only a single angle αR turns out to be

important. These angles αR can be reinterpreted as a modification of the SU(1, 1)-scalars

coupling to the multiplet R in the form

φ1
(R) = eiαRφ1 , φ2

(R) = e−iαRφ2 , Φ(R) = eiαRφ1 + e−iαRφ2 . (2.8)

The kinetic term of the vector fields ARµ is

Lkin(ARµ ) = −ηRS + 2ZRS
4|Φ(R)|2

FRµνF
Sµν , (2.9)

where FRµν is the nonabelian field strength of ARµ .
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In this paper we are mainly interested in a special point of the SO(6, 6)/SO(6)×SO(6)-

manifold, namely the point where the matter multiplets are ‘turned off’. This point is

denoted Z0 and corresponds to the identity point of the coset SO(6, 6)/SO(6) × SO(6),

that is, Z0
∼= SO(6) × SO(6). In our parametrization we have at Z0: X =

�
, Y = 0 and

Pab = δab.

3. CSO gaugings

In the context of maximal supergravities CSO-groups have been used to construct gauged

supergravities, see e.g. [13 – 17]. By truncating the four-dimensional N = 8 theory to an

N = 4 theory one obtains four-dimensional N = 4 supergravities with a CSO-gauging [13,

15]. The definition of CSO-algebras as outlined below is similar to the discussion in [16].

Let g be a real Lie algebra, then g is admissible as a gauge algebra of N = 4 supergrav-

ity if and only if there exists a basis of generators TR of g such that the structure constants

defined by [TR, TS ] = fRS
UTU satisfy

fRS
T ηTU + fRU

T ηTS = 0 , (3.1)

with η as defined in (2.5). We define a symmetric nondegenerate bilinear form Ω on the

Lie algebra g by its action on the basis elements TR through

Ω(TR, TS) = ηRS . (3.2)

The constraint (3.1) then is equivalent to demanding that the form Ω is invariant un-

der the adjoint action of the Lie algebra g on itself. From now on we write ‘metric’ for

‘nondegenerate bilinear symmetric form’.

On complex simple Lie algebras there exists only a one-parameter family of invariant

metrics and every invariant metric is proportional to the Cartan–Killing metric. For simple

real algebras of which the complex extensions is simple there exists up to multiplicative

factor only one invariant metric, given by the Cartan–Killing metric. However, for simple

real Lie algebras of which the complex extension is not simple, there exists a two-parameter

family of invariant metrics. This can be seen from the fact that if the complex extension

is not simple, it is of the form m⊕m, with m a complex simple Lie algebra.

For Lie algebras of the type cso(p, q, r) (for definitions, see section 3.1) the situation

is more delicate. The criterion of nondegeneracy turns out to be very restrictive. We have

the following useful lemma:

Lemma on invariant metrics on CSO-algebras. The Lie algebra cso(p, q, r) with r > 0

admits an invariant nondegenerate symmetric bilinear form (i.e. an invariant metric) only

if

(1) p+ q + r = 2 or (2) p+ q + r = 4 . (3.3)

Since the algebras cso(1, 0, 1) ∼= cso(0, 0, 2) ∼= cso(0, 0, 4) ∼= u(1) are abelian, the structure

constants are zero and give therefore rise to trivial gaugings. Hence, we focus on the

CSO-algebras of the type cso(p, q, r) with p+ q + r = 4 and 0 < r < 4.
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3.1 Lie algebras of the type cso(p, q, r)

In the vector representation the Lie algebra so(p, q + r) admits a set of basis elements

JAB = −JBA, 1 ≤ A,B ≤ p+ q + r satisfying the commutation relation:

[JAB , JCD] = gBCJAD + gADJBC − gACJBD − gBDJAC , (3.4)

where gAB are the entries of the diagonal matrix with p eigenvalues +1 and q+r eigenvalues

−1.

We split the indices1 A,B, . . . into indices I, J, . . . running from 1 to p+ q and indices

a, b, . . . running from p + q + 1 to p + q + r. The Lie algebra so(p, q + r) splits as a

vector space direct sum so(p, q + r) = so(p, q) ⊕ V ⊕ Z, where the elements JIJ span the

so(p, q) subalgebra, the elements JIa = −JaI span the subspace V and the elements Jab
span the subalgebra Z. The subspace V consists of r copies of the vector representation

of the subalgebra so(p, q), whereas the subalgebra Z consists of singlet representations of

so(p, q). The commutation relations are schematically given by:

[so(p, q) ,V] ⊂ V , [V ,V] ⊂ Z ⊕ so(p, q) ,

[so(p, q) ,Z] ⊂ 0 , [Z ,V] ⊂ V ,
[so(p, q) , so(p, q)] ⊂ so(p, q) , [Z ,Z] ⊂ Z .

(3.5)

We define for any ξ ∈ IR a linear map Tξ : so(p, q + r)→ so(p, q + r) by its action on

the subspaces:

x ∈ so(p, q) , Tξ : x 7→ x ,

x ∈ V , Tξ : x 7→ ξx ,

x ∈ Z , Tξ : x 7→ ξ2x .

(3.6)

If ξ 6= 0,∞ the map Tξ is a bijection. The maps T0 and T∞ give rise to so-called contracted

Lie algebras.

We define the limits T0(so(p, q)) = s ∼= so(p, q), T0(V) = r and T0(Z) = z. The Lie

algebra cso(p, q, r) is defined as T0(so(p, q+r)). Hence we have cso(p, q, r) = so(p, q)⊕ r⊕ z

and the commutation rules are of the form

[s , s] ⊂ s , [r , r] ⊂ z , [s , r] ⊂ r , [r , z] = [s , z] = [z , z] = 0 . (3.7)

We mention some special cases and properties. If r = 0 the construction is trivial and

therefore we take r > 0. If p + q = 1 we have s = 0 and if p + q = r = 1 also z = 0

and we have cso(1, 0, 1) ∼= cso(0, 1, 1) ∼= u(1). If p+ q = 2 the Lie algebra s is abelian and

if p + q > 2 the Lie algebra s is semisimple and the vector representation is irreducible.

Hence if p + q > 2 we have [s, r] ∼= r. If r = 1 we have z = 0 and the Lie algebra is an

Inönü–Wigner contraction.

From the construction follows a convenient set of basis elements of cso(p, q, r). The

elements SIJ = −SJI are the basis elements of the subalgebra s, the elements vIa are the

1The splitting of indices in this case is not related to the splitting of the indices of the SO(6, 6)-scalars

introduced in section 2.

– 5 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
1

basis elements of r and the elements zab = −zba are the basis elements of z. The only

nonzero commutation relations are:

[SIJ , SKL] = g̃JKSIL − g̃IKSJL − g̃JLSIK + g̃ILSJK ,

[SIJ , vKa] = g̃JKvIa − g̃IKvJa ,
[vIa, vJb] = g̃IJZab .

(3.8)

The numbers g̃IJ are the elements of the diagonal metric with p eigenvalues +1 and q

eigenvalues −1. The commutation relations (3.8) can also be taken as the definition of the

Lie algebra cso(p, q, r).

3.2 Choosing the SU(1, 1)-angles

In general the gauge algebra g can be decomposed as a direct sum g = g1⊕g2⊕ . . . and it is

clear that the SU(1, 1)-angles can be different on different factors gi. With each generator

TR of the gauge algebra g we associate a gauge field ARµ and an SU(1, 1)-angle αR. The

gauge group rotates the gauge fields associated to the same factor into each other. All

the generators that can be obtained by rotating the generator TR need to have the same

SU(1, 1)-angle αR for the gauge group to be a symmetry. Hence along the gauge orbit of

TR, denoted by Γ[TR] and defined by

Γ [TR] =
{

eadA(TR)|A ∈ g
}
, (3.9)

the SU(1, 1)-angle has to be constant. If Γ[TR] ∩ Γ[TS ] 6= 0 we need αR = αS . For

semisimple groups the gauge orbits are the simple factors and hence with each simple

factor we associate a single SU(1, 1)-element.

For the algebras cso(2, 0, 2), cso(1, 1, 2) the gauge orbit of s, which is one-dimensional,

is s ⊕ r and the gauge-orbit of r is r ⊕ z. For the algebras cso(3, 0, 1) and cso(2, 1, 1) the

gauge orbit of every element of s is the whole Lie algebra. Finally, for cso(1, 0, 3) the gauge

orbit of each element r is contained in r ⊕ z and all gauge orbits overlap. Hence for all

CSO-type algebras under consideration the SU(1, 1)-angles have to be constant over the

whole Lie algebra cso(p, q, r).

3.3 The embedding of CSO-algebras in SO(6, 6)

The CSO-algebras that are admissible are the cso(p, q, r) with p+ q+ r = 1, and since for

r = 0 the algebra is semisimple, we only consider r > 0.

To find a basis such that (3.1) is satisfied on the structure constants we first construct

any basis for the Lie algebra and find the invariant metric Ω, which in most cases can

be cast in a simple form. The second step is to find a basis-transformation such that in

the new basis Ω is diagonalized with all eigenvalues ±1. Then the structure constants are

calculated in this basis, and by construction they satisfy (3.1). This procedure is not unique

and it is easy to see that any SO(6, 6)-transformation on the structure constants leaves the

constraint (3.1) invariant. However, we are not trying to be completely exhaustive. On

the other hand, an SO(6, 6)-transformation can be seen as a rotation on the scalar fields

– 6 –
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Za
R and has the physical interpretation of turning on the matter fields (if the rotation is

not contained in the subgroup SO(6) × SO(6)).

For all CSO-algebras under consideration the dimension is six and the invariant metric

has signature + + +−−− (see section 3.4). This implies that precisely two CSO-algebras

can be embedded into the vector representation of SO(6, 6).

There is a � 2-freedom in choosing the embedding into SO(6, 6): for a given invariant

metric Ω the eigenvectors with positive eigenvalues can be embedded either in the subspace

spanned by the generators TA where ηAB = −δAB or in the subspace spanned by the gener-

ators TI where ηIJ = +δIJ . This difference in embedding can result in a physical difference

that modifies the potential. To distinguish between the two kinds of structure constants

resulting from the difference in embedding we denote one embedding as CSO(p, q, r)+ and

the other as CSO(p, q, r)−. In contrast to the case of semisimple gaugings (where one can

use the Cartan–Killing metric to choose a sign-convention), the procedure of assigning a

plus or minus to the gauging is arbitrary, since if Ω is an invariant metric, then also −Ω is

an invariant metric that interchanges the plus- and minus-type of gauging. In appendix B

we present the structure constants for the different embeddings. We note that for the

Lie algebras cso(2, 0, 2) and cso(1, 1, 2) the structure constants of the plus-embedding and

minus-embedding are the same, hence no distinction will be made for these algebras.

Having obtained a set of structure constants that satisfies the constraint (3.1) we

return to the N = 4 supergravity and use the structure constants as input to investigate

the potential. In section 4 we present the details of the potential that are used in the

analysis and in section 5 we present the analysis of the potential with the CSO-gaugings.

To finish this section, we give a proof of the lemma on invariant metric on CSO-algebras.

3.4 Proof of the lemma

The proof consists of two parts. In the first part (Part I below) we prove for all but the

CSO-algebras listed in (3.3) that no invariant metric exists. We do this by assuming a

bilinear form Ω is invariant and then prove it is degenerate. In the second part (Part II)

we give the invariant metrics for the CSO-algebras listed in (3.3).

The first part uses the concepts of isotropic subspaces and Witt-indices. For a bilinear

symmetric form B on a real vector space V , an isotropic subspace is a subspace W of V

on which B vanishes. The maximal isotropic subspace is an isotropic subspace with the

maximal dimension. The dimension of the maximal isotropic subspace is the Witt-index

of the pair (B, V ) and is denoted mW .

If B is nondegenerate and the dimension of V is n, one can always choose a basis in

which B has the matrix form

B =




�
p×p 0

0 0
�
r×r

0
�
r×r 0


 , for p, r with p+ 2r = n . (3.10)

This clearly shows that the Witt-index is r. Hence we have the inequality: mW ≤ [n/2].

If the center z is nonzero we have [r, r] = z, that is, for every z ∈ z there are vi, wi ∈ r

such that
∑

i[vi, wi] = z. Hence if z, z′, with z =
∑

i[vi, wi] and vi, wi ∈ r, we have

– 7 –
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Ω(z, z′) =
∑

i Ω([vi, wi], z
′) =

∑
i Ω(vi, [wi, z

′]) = 0 and hence the center z is contained in

the maximal isotropic subspace. Hence if the dimension of z exceeds half the dimension of

the Lie algebra, any invariant symmetric bilinear form is necessarily degenerate.

Part I

We split part I in six different cases. For every case we assume an invariant symmetric

bilinear form Ω exists and prove degeneracy. We use the same decomposition as in sec-

tion 3.1, g = s ⊕ r ⊕ z, with g a CSO-type Lie algebra, and the standard commutation

relations (3.8).

cso(p, q, r) with p+ q > 2 and r > 1

We have [s, s] = s, [r, r] = z and [s, r] = r. We prove that z is perpendicular to the

whole algebra with respect to Ω, which implies that Ω is degenerate.

The center z is perpendicular to itself since it is nonzero and thus defines an isotropic

subspace. For every v ∈ r there are ji ∈ s and wi ∈ r such that
∑

i[ji, wi] = v. Hence for

such v and z ∈ z we have Ω(v, z) =
∑

i Ω(ji, [wi, z]) = 0 and Ω is zero on z× r. Since s is

semisimple a similar argument shows that Ω is zero on z × s and then z is orthogonal to

the whole Lie algebra with respect to Ω.

cso(p, q, r) with p+ q = 1 and r > 3

We have s = 0 and dim r = r and dim s = r(r − 1)/2. The dimension of the center

becomes too large for Ω to be nondegenerate if r(r − 1)/2 > r(r + 1)/4. It follows that if

r > 3 there is no invariant metric.

cso(p, q, r) with p+ q = 1 and r = 2

From the commutation relations (3.8) we see that we can choose a basis e, f, z such

that the only nonzero commutator is [e, f ] = z. We have Ω(z, z) = 0, but also Ω(e, z) =

Ω(e, [e, f ]) = Ω([e, e], f) = 0. Similarly Ω(z, f) = 0 and thus z is perpendicular to the

whole algebra and Ω is degenerate.

cso(p, q, r) with p+ q = 2 and r = 1

The Lie algebras cso(1, 1, 1) and cso(2, 0, 1) have zero center and hence [r, r] = 0. For

every x ∈ r there are yi ∈ r and Ai ∈ s such that x =
∑

i[Ai, yi]. Therefore we have for

such x, yi, Ai and v ∈ r : Ω(x, v) =
∑

i Ω(Ai, [yi, v]) = 0. Thus r is an isotropic subspace of

dimension 2, whereas the dimension of the Lie algebra is 3.

cso(p, q, r) with p+ q = 2 and r > 2

We choose a basis {j, ea, fa, zab}, where j ∈ s, ea, fa ∈ r and zab = −zba ∈ z and

1 ≤ a, b ≤ r. In terms of the basis elements in (3.8) we have j = J12, ea = v1a, f = v2a.

The only nonzero commutation relations are

[j, ea] = fa , [j, fa] = σea , [fa, fb] = σzab [ea, eb] = zab , (3.11)

– 8 –
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where σ = +1 for cso(1, 1, r) and σ = −1 for cso(2, 0, r).

From the commutation relations (3.11) one deduces that the subspace spanned by the

elements ea and zab defines an isotropic subspace of dimension r(r + 1)/2. The dimension

of this isotropic subspace exceeds half the dimension of the Lie algebra if r > 2.

cso(p, q, r) with p+ q > 3 and r = 1

The Lie algebras in this class have zero center and hence [r, r] = 0. We have r = [s, r],

s = [s, s] and s is semisimple. It follows that Ω is zero on r × r and Ω coincides with the

Cartan–Killing metric of s on s× s. Hence we are interested in Ω on r× s.

From (3.8) we see that we can choose a basis {SIJ , vI}, where 1 ≤ I, J ≤ p + q, and

the only nonzero commutation relations are:

[SIJ , SKL] = ηJKSIL − ηIKSJL − ηJLSIK + ηILSJK

[SIJ , vK ] = ηJKvI − δIKvJ .
(3.12)

We define ΩIJK = Ω(vI , SJK) = −ΩIKJ . Invariance requires Ω([SIJ , vK ], SLM ) =

−Ω(vK , [SIJ , SLM ]), from which we obtain:

ηJKΩILM − ηIKΩKLM = −ηJLΩKIM − ηIMΩKJL + ηILΩKJM + ηJMΩKIL . (3.13)

Contracting equation (3.13) with ηIKηJL we obtain:

ηIJΩIJK = 0 ,∀K . (3.14)

Contracting (3.13) with ηIK and using (3.14) we find:

−(p+ q)ΩIJK = ΩIJK + ΩKIJ + ΩJIK . (3.15)

Writing out (3.15) three times with the indices cyclically permuted and adding the three

expressions we find the result:

(p+ q − 3) (ΩIJK + ΩJKI + ΩKIJ) = 0 . (3.16)

Since we assumed p+ q > 3 the cyclic sum of ΩIJK has to vanish.

Using the relation [SIJ , v
J ] = vI , where no sum is taken over the repeated index J and

where vJ = ηJKvK , and requiring Ω([SIJ , v
J ], SKL) = −Ω(vJ , [SIJ , SKL]) we obtain:

ΩIJK + ΩJIK + ΩKJI = 0 . (3.17)

Combining (3.17) and the vanishing of the cyclic sum we see that ΩIJK = 0. Hence the

subspace r is orthogonal to the whole Lie algebra with respect to Ω and Ω is degenerate.

This concludes part I.
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Part II

We now give for the Lie algebras listed in the lemma on invariant metrics on CSO-algebras

the most general invariant metric up to a multiplicative constant.

The Lie algebra cso(1, 0, 1) is abelian and hence any metric is invariant.

For the Lie algebras cso(2, 0, 2) and cso(1, 1, 2) we use the ordered basis β = {j, e1, e2,

f1, f2, z} with the only nonzero commutation relations

[j, ea] = fa , [j, fa] = σea , [fa, fb] = σz , [ea, eb] = z , (3.18)

where σ = +1 for cso(1, 1, 2) and σ = −1 for cso(2, 0, 2).

In the basis β the invariant metric can be written in matrix form as:

Ω =




a 0 0 0 0 +1

0 0 0 0 −1 0

0 0 0 +1 0 0

0 0 +1 0 0 0

0 −1 0 0 0 0

+1 0 0 0 0 0



, a ∈ IR , (3.19)

for both cso(1, 1, 2) and cso(2, 0, 2). The eigenvalues are −1,−1,+1,+1, 1
2 (a +

√
a2 + 4),

1
2 (a−

√
a2 + 4) and the signature is + + +−−−.

For the Lie algebras cso(2, 1, 1) and cso(3, 0, 1) we use the ordered basis β = {t1, t2, t3,

v1, v2, v3} such that the commutation relations are

[ti, tj] = εijkη
kltl , [ti, vj ] = εijkη

klvl, [vi, vj ] = 0 , (3.20)

where εijk is the three-dimensional alternating symbol and ηij is the diagonal metric with

eigenvalues (+1,−1,−1) for cso(2, 1, 1) and with eigenvalues (+1,+1,+1) for cso(3, 0, 1).

With respect to the ordered basis β the invariant metric is given by

Ω =

(
aη η

η 0

)
, (3.21)

where each entry is a 3 × 3-matrix. The eigenvalues are λ± = 1
2 (a ±

√
a2 + 4), both with

multiplicity three, and the signature is −−−+ ++.

For the Lie algebra cso(1, 0, 3) we use the ordered basis β = {v1, v2, v3, z1, z2, z3} such

that the commutation relations are

[vi, vj ] = 1
2εijkzk , [vi, zj ] = [zi, zj ] = 0 , (3.22)

where a summation is understood for every repeated index. The invariant metric is given

in matrix form with respect to the basis β by:

Ω =

(
A3×3

�
3×3

�
3×3 0

)
, (3.23)
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where A3×3 is an undetermined 3× 3-matrix. Since det Ω = −1 there are no null vectors.

We find that if µ1, µ2, µ3 are the eigenvalues of A, then λi = 1
2

(
µi ±

√
µ2
i + 4

)
are the

eigenvalues of Ω. Hence the signature is + + +−−−.

4. The potential and its derivatives

In reference [8] we presented a scheme for analyzing the potential of N = 4 supergravity

for semisimple gaugings. We wish to apply this scheme for the CSO-gaugings, since after

the analysis of the preceding section the only difference lies in the numerical values of the

structure constants. In this section we review the definitions and steps of the analysis of

the potential.

4.1 The potential

The analysis of an extremum of the potential can be split in first finding an extremum

with respect to the SU(1, 1)-scalars and subsequently investigating whether the point Z0

determines an extremum with respect to the SO(6, 6)-scalars. We therefore write the

potential as:

V =
∑

i,j

(R(ij)(φ)Vij(Z) + I(ij)(φ)Wij(Z)) . (4.1)

The indices i, j, . . . label the different factors in the gauge group G. R(ij) and I(ij) contain

the SU(1, 1)-scalars and depend on the gauge coupling constants and the SU(1, 1)-angles,

Vij andWij contain the structure constants, depend on the matter fields, and are symmetric

resp. antisymmetric in the indices i, j. The SU(1, 1)-angle associated with the ith factor

is written αi, and the structure constants determined by the ith factor are denoted f
(i)
RS

T

and we define f
(i)
RST = f

(i)
RS

UηTU . The functions Vij and Wij are given by:

Vij = 1
4Z

RUZSV (ηTW + 2
3Z

TW ) f (i)
RST f

(j)
UVW , (4.2)

Wij = 1
36 ε

abcdefZa
RZb

SZc
TZd

UZe
V Zf

W f (i)
RST f

(j)
UVW . (4.3)

The extremum of the potential in the SU(1, 1)-directions has been determined in [7].

For completeness we briefly review this analysis in appendix A. The value of the potential

at the extremum with respect to the SU(1, 1)-scalars is given by

V0 = sgnC−
√

∆− T− , (4.4)

where (see [7])

C− =
∑

ij

gigj cos(αi − αj)Vij , (4.5)

T− =
∑

ij

aijWij , (4.6)

∆ = 2
∑

ij

∑

kl

VijVklaikajl , (4.7)

aij ≡ gigj sin(αi − αj) . (4.8)
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The condition for this extremum to exist is that ∆ > 0, which implies that at least two of

the SU(1, 1)-angles must be different.

At the point Z0 the functions defined above are given by

Vij(Z0) = δij

(
− 1

12f
(i)
ABCf

(i)
ABC + 1

4f
(i)
ABIf

(i)
ABI

)
, (4.9)

Wij(Z0) = 1
36 ε

ABCDEFf
(i)
ABCf

(j)
DEF , (4.10)

∆(Z0) = 2
∑

i,j

a2
ijVii(Z0)Vjj(Z0) , (4.11)

C−(Z0) =
∑

i

g2
i Vii(Z0) , (4.12)

R(ij)(Z0) = δij
2 sign C−(Z0)√

∆0

∑

j

Vjj(Z0)a2
ij , (4.13)

I(ij)(Z0) = −aij . (4.14)

With the formulae (4.9- 4.14) it is easy to plug in the values of the structure constants and

determine the value of the potential at Z0, see section 5.

4.2 The derivatives of the potential

To determine whether the point Z0 is an extremum with respect to the SO(6, 6)-scalars we

calculate the derivatives with respect to the parameters Pab introduced in section 2 (see

also [8]). We have

∂V

∂Pab
(Z0) =

∑

i

R(ii)(Z0)f
(i)
a+6,CJf

(i)
bCJ − 1

6

∑

ij

aijε
bCDEFGf

(i)
a+6,CDf

(j)
EFG . (4.15)

Since for CSO-gaugings at most two groups are possible to fit in SO(6, 6) the summations

over the indices i, j simplify significantly. For the point Z0 to be an extremum the 6× 6-

matrix ∂V/∂P should vanish.

If the point Z0 turns out to be an extremum with respect to both the SU(1, 1)-scalars

and the SO(6, 6)-scalars, we need the second derivatives at Z0 to determine whether the

extremum is stable or unstable. Schematically the second derivatives are given by

∂2V

∂φ2
=
∑

ij

∂2R(ij)

∂φ2
Vij , (4.16)

∂2V

∂φ∂P
=
∑

ij

∂R(ij)

∂φ

∂Vij
∂P

, (4.17)

∂2V

∂P 2
=
∑

ij

R(ij)∂
2Vij
∂P 2

+ I(ij) ∂
2Wij

∂P 2
. (4.18)

The second derivatives (4.16) were studied in [8]. The sign of (4.16) depends on the sign

of C−. For positive (negative) C− the extremum in the SU(1, 1)-scalars is a minimum

(maximum). The mixed second derivatives vanish if either the derivatives with respect to

the SU(1, 1)-scalars φ or with respect to the matter scalars vanishes.
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gauge factor Vii(Z0) gauge factor Vii(Z0)

CSO(1, 0, 3)+ 1 CSO(1, 0, 3)− 1

CSO(2, 0, 2)+ 0 CSO(2, 0, 2)− 0

CSO(1, 1, 2)+ 1 CSO(1, 1, 2)− 1

CSO(3, 0, 1)+ −1
2(λ4 + 4λ2 + 1) CSO(3, 0, 1)− −1

2(λ4 + 4λ2 + 1)

CSO(2, 1, 1)+
1
2(3λ4 + 4λ2 + 3) CSO(2, 1, 1)− 1

2(3λ4 + 4λ2 + 3)

Table 1: The value of Vii at the point Z0 for different gauge factors. The plus- and minus-sign

refer to two distinct possibilities to embed the factor into the gauge group. The number λ is an

arbitrary positive number, coming from an arbitrary constant in the invariant metric.

Hence if C− > 0 at Z0 we need to check the eigenvalues of the matrix of second

derivatives (4.18). With the formulas of reference [8] it is a matter of algebra to obtain:

∂2Vij
∂Pab∂Pcd

(Z0) =0 , i 6= j ,

∂2Vii
∂Pab∂Pcd

(Z0) =δacf
(i)
bGJf

(i)
dGJ + δbdf

(i)
a+6,GJf

(i)
cGJ − 1

2δbcf
(i)
a+6,GJf

(i)
dGJ

− 1
2δadf

(i)
c+6,GJf

(i)
bGJ + f

(i)
a+6,c+6,Rf

(i)
b,d,J + f

(i)
b,c+6,Rf

(i)
a+6,d,R ,

∂2Wij

∂PabPcd
(Z0) = 1

24ε
bBCDEF

(
δacf

(i)
dBCf

(j)
DEF − δadf

(i)
c+6,BCf

(j)
DEF

)

+ 1
24ε

dBCDEF
(
δacf

(i)
bBCf

(j)
DEF − δbcf

(i)
a+6,BCf

(j)
DEF

)

+ 1
12ε

bdCDEF
(

2f
(i)
a+6,c+6,Cf

(j)
DEF + 3f

(i)
a+6,CDf

(j)
c+6,EF

)

− (i↔ j) .

(4.19)

The stability is then determined by the eigenvalues of the 36× 36-matrix given by

∑

i

R(ii)(Z0)
∂2Vii

∂Pab∂Pcd
(Z0)−

∑

ij

aij
∂2Wij

∂PabPcd
(Z0) . (4.20)

5. Analysis of the potentials of CSO-gaugings

With the formulas of section 4 and the structure constants of the CSO-algebras, given in

appendix B, at our disposal, we analyze the potential and the first and second derivatives

at Z0 for different CSO-gaugings. For each gauge group the function Vii(Z0) is given in

table 1. Note that the value of Vii(Z0) is the same for plus- and minus-embeddings. Since

only two CSO gauge-algebras fit into SO(6, 6) we have ∆(Z0) = 4a2
12V11(Z0)V22(Z0), hence

∆ > 0 if and only if both V11(Z0) and V22(Z0) are nonzero and have the same sign. Hence

in searching for gaugings that admit an extremum with respect to the SU(1, 1)-scalars, we

can disregard the gaugings that involve CSO(2, 0, 2) and the gaugings of which precisely

one factor is CSO(3, 0, 1).

For the groups CSO(3, 0, 1) and CSO(2, 1, 1) the structure constants contain an un-

determined positive parameter λ that cannot be removed redefinition of the generators
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preserving the constraints (3.1). This parameter is a remnant of the invariant metric;

there is in general an m-parameter family of invariant metrics with m > 1 for cso(p, q, r)

with p+ q + r = 4.

The gaugings for which the point Z0 corresponds to an extremum of both the SU(1, 1)-

and the SO(6, 6)-scalars are: CSO(1, 0, 3)−×CSO(1, 0, 3)−, CSO(1, 0, 3)+×CSO(1, 0, 3)−
and CSO(1, 0, 3)+ × CSO(1, 0, 3)+. Only these gaugings have vanishing derivative with

respect to the parameters Pab and ∆ > 0. For these three gaugings the value of the potential

at the point Z0 is given by V0 = 0. With respect to the SU(1, 1)-scalars the potential is a

minimum, C−(Z0) > 0, but with respect to the SO(6, 6)-scalars the extremum is unstable;

the mass-matrix ∂2V/∂P∂P has both positive and negative eigenvalues.

6. Cosmological scaling solutions

If a scalar potential is of the form

V (χ,Φi) = eb χ U(Φi) , (6.1)

where χ has canonical kinetic term and is independent of the scalars Φi, a cosmological

scaling solution exists if the function U(Φi) has a positive extremum with respect to the

scalars Φi [5]. The scale factor of the Friedmann-Robertson-Walker metric goes as t1/b
2

for

the scaling solution. The characteristic feature of scaling solutions is that the ratio of the

kinetic energy of the scalar χ and the potential energy of the scalar χ remains constant

during evolution. Scaling solutions appear as fixed points in autonomous systems that

describe scalar cosmologies, see [18] for a recent review and a list of references.

In N = 4 supergravity the potential factorizes in a trivial way if all SU(1, 1)-angles are

equal; in this case the function R(ij)(r, ϕ) simplifies to:

R(ij)(r, ϕ) = gigj
1 + r2 − 2r cosϕ

1− r2
= gigj

|1 + z|2
1− |z|2 , (6.2)

where z = −reiϕ. Introducing τ = i(1 − z)/(1 + z), which takes values in the complex

upper half plane since |z| < 1, and σ = Reτ and e−χ = Imτ one finds

R(ij)(χ, σ) = gigje
χ . (6.3)

Hence we find for the potential at Z0 in this case

V (Z0) = − 1
12eχ

∑

i

g2
i

(
f

(i)
ABCf

(i)
ABC − 3f

(i)
ABIf

(i)
ABI

)
. (6.4)

The first derivatives with respect to Pab at Z0 simplifies to:

∂V

∂Pab
(Z0) = eχ

∑

i

g2
i f

(i)
a+6,DKf

(i)
bDK . (6.5)

The second derivatives with respect to Pab at Z0 become:

∂2V

∂Pab∂Pcd
(Z0) =eχ

∑

i

g2
i

(
δacf

(i)
bCJf

(i)
dCJ + δbdf

(i)
a+6,CJf

(i)
c+6,CJ

− 1
2δbcf

(i)
a+6,CJf

(i)
dCJ − 1

2δadf
(i)
c+6,CJf

(i)
bCJ + 2f

(i)
a+6,c+6,Rf

(i)
bdR

) (6.6)
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The computations are simplified by noting that the formulas factorize into contributions

of different factor groups. Hence to look for an extremum one only has to investigate the

contributions of different factor groups to ∂V/∂P .

We find that only CSO(1, 1, 2) has vanishing contribution to ∂V/∂P and hence we

find that the CSO-gaugings that allow for scaling solutions at Z0 are CSO(1, 1, 2) and

CSO(1, 1, 2) × CSO(1, 1, 2). Note that the structure constants of CSO(1, 1, 2)+ are the

same as of CSO(1, 1, 2)−. For the gauging CSO(1, 1, 2) × CSO(1, 1, 2) the eigenvalues of

∂2V/∂P 2 are found to be all positive. The potential at Z0 is given by:

V (χ,Z0) = (g2
1 + g2

2) eχ . (6.7)

Hence the gauging CSO(1, 1, 2) × CSO(1, 1, 2) admits a stable scaling solution. The

same is then true for the gauging CSO(1, 1, 2), since this is a truncation of the gauging

CSO(1, 1, 2) × CSO(1, 1, 2) obtained by putting g2 = 0.

7. Conclusions

The conclusions of this paper can be split in three parts.

The first conclusion concerns the gaugings in matter-coupled N = 4 supergravity

with CSO-groups. In the formulation of N = 4 supergravity of [11] the only possible

CSO-gaugings require that the Lie algebra cso(p, q, r) admits an invariant metric. The

only Lie algebras cso(p, q, r) with r > 0 that admit an invariant metric are those with

p + q + r = 2, 4. If p + q + r = 2 the Lie algebra cso(p, q, r) is abelian and hence we

considered only p+ q + r = 4.

The second conclusion is that the CSO-gaugings that we considered showed no stable

minimum with respect to all 36+2 scalars at the point Z0. This analysis concerns the case

of N = 4 supergravity with six vectormultiplets, and is therefore not completely general.

Also the formalism used in the present paper and in [8] has recently been generalized [10].

Going beyond the present paper as proposed in [10] involves solving a system of constraints

involving parameters {ξαM , fαKLM}. It is an interesting and important challenge to solve

these equations for ξαM 6= 0, and to perform a general analysis of scalar potentials in

gauged N = 4 supergravity.

The third conclusion is that a stable scaling solution exists at Z0 in N = 4 gauged

supergravity with gauge group CSO(1, 1, 2), or any power of CSO(1, 1, 2). The scaling

solution is characterized by a scale factor, which grows linearly in time and the effective

potential contains one scalar χ;

Veff (χ) = (g2
1 + g2

2 + . . .) eχ . (7.1)

The numbers gi are the coupling constants for each factor of CSO(1, 1, 2). Also this analysis

is not exhaustive. For example, there might be scalars in the SO(6, 6)-sector that factorize

out of the potential such as to combine with the SU(1, 1)-scalar an overall exponential

factor. It will be interesting to study the cosmological models resulting from these scaling

solutions in more detail.
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cso(2,0,2)

f12
3 = 1 f13

2 = −1 f18
9 = 1 f19

8 = −1 f23
1 = 1

f23
7 = −1 f27

3 = −1 f37
2 = 1 f78

9 = 1 f79
8 = −1

f89
1 = −1 f56

7 = 1

cso(1,1,2)

f12
8 = −1 f13

9 = 1 f18
2 = −1 f19

3 = 1 f27
8 = 1

f28
1 = 1 f28

7 = −1 f37
9 = −1 f39

1 = −1 f39
7 = 1

f78
2 = −1 f79

3 = 1

cso(1,0,3)

f12
3 = 1 f12

9 = −1 f18
9 = −1 f13

2 = −1 f13
8 = 1

f18
3 = 1 f19

2 = −1 f19
8 = 1 f23

1 = 1 f23
7 = −1

f27
3 = −1 f27

9 = 1 f29
1 = 1 f29

7 = −1 f37
2 = 1

f27
8 = −1 f38

1 = −1 f38
7 = 1 f78

3 = 1 f78
9 = −1

f79
2 = −1 f79

5 = 1 f89
1 = 1 f89

7 = −1

cso(2,1,1)

f12
3 = −λ2 f12

9 = −1 f13
2 = λ2 f13

8 = 1 f18
3 = 1

f18
9 = −(λ2 + 2) f19

2 = −1 f19
8 = (λ2 + 2) f23

1 = −λ2 f23
7 = 2λ2 + 1

f27
3 = 2λ2 + 1 f27

9 = −λ2 f29
1 = 1 f29

7 = λ2 f37
2 = −(2λ2 + 1)

f37
8 = λ2 f38

1 = −1 f38
7 = λ2 f78

3 = −λ2 f78
9 = −1

f79
2 = λ2 f79

5 = 1 f89
1 = λ2 + 2 f89

7 = −1

Table 2: Structure constants of some relevant cso-algebras.
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A. SU(1, 1) scalars and angles

When we parameterize the coset SU(1, 1)/U(1) as in eq. (2.2), the scalars r and ϕ appear

in the potential (4.1) through

R(ij) =
gigj

2
(Φ∗iΦj + Φ∗jΦi)

= gigj

(
cos(αi − αj)

1 + r2

1− r2
− 2r

1− r2
cos(αi + αj + ϕ)

)
, (A.1)

I(ij) =
gigj
2i

(Φ∗iΦj − Φ∗jΦi) = −gigj sin(αi − αj) . (A.2)
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Introducing

C± =
∑

ij

gigj cos(αi ± αj)Vij , S+ =
∑

ij

gigj sin(αi + αj)Vij , (A.3)

T− =
∑

ij

gigj sin(αi − αj)Wij , (A.4)

we rewrite the potential as

V = C−
1 + r2

1− r2
− 2r

1− r2

(
C+ cosϕ− S+ sinϕ

)
− T− . (A.5)

This extremum in r and ϕ takes on the form

cosϕ0 =
s1C+√
C2

+ + S2
+

, sinϕ0 = − s1S+√
C2

+ + S2
+

,

r0 =
1√

C2
+ + S2

+

(
s1C− + s2

√
∆
)
, ∆ ≡ C2

− − C2
+ − S2

+ , (A.6)

where s1 and s2 are signs. These are determined by requiring 0 ≤ r0 < 1, this gives

s1 = sgnC− and s2 = −1. Substitution of r0 and ϕ0 in V leads to eq. (4.4).

In the case that all SU(1, 1) angles αi vanish, S+ = T− = 0 and C− = C+, and one finds

r0 = 1 and ∆ = 0. This is a singular point of the parametrization, which we will exclude.

This case corresponds to the Freedman-Schwarz potential [19], which has no minimum.

For the kinetic term and mass-matrix of the SU(1, 1)-scalars we introduce:

x =
2

(1− r0)2
(r cosϕ− r0 cosϕ0) ,

y =
2

(1− r0)2
(r sinϕ− r0 sinϕ0) . (A.7)

In these variables we find

L(x, y) = − 1
2

(
1− r2

0

1− r2

)2 (
(∂x)2 + (∂y)2)− V0

−1
2 sgnC−

√
∆ (x2 + y2) + . . . , (A.8)

where the ellipsis indicate terms of higher order in x and y.

B. Structure constants

In this appendix we give the structure constants of the cso(p, q, r) Lie algebras with p+q+

r = 4 in a basis such that the constraint (3.1) is satisfied. The Lie algebras cso(p, q, r) with

p+q+r = 4 have dimension six and the invariant metric has signature +++−−−. A gauge

algebra consists of two Lie algebras cso(p, q, r) with p+ q+ r = 4, and the first Lie algebra

can be embedded into the subspace spanned by the generators T1, T2, T3, T7, T8, T9 and the

second can embedded into the subspace spanned by the generators T4, T5, T6, T10, T11, T12.
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We give the structure constants of every cso(p, q, r) with p + q + r = 4 as embed-

ded in the subspace spanned by the generators T1, T2, T3, T7, T8, T9 since the other em-

bedding can be obtained from the latter by the following permutation of the indices:

σ = (14)(25)(36)(7 10)(8 11)(9 12) ∈ S12. In fact we also only give the structure con-

stants of the plus-embedding, the minus-embedding (with the generators lying in the

same subspace) can be obtained by applying the following permutation of the indices:

τ = (17)(28)(39)(4 10)(5 11)(6 12) ∈ S12. Consistency requires στ = τσ, which is easily

seen to be satisfied.

With these preliminaries the structure constants of cso(2, 0, 2), cso(1, 1, 2) and cso(1, 0,

3) are given as in table 2. To be economic in writing we only present the nonzero structure

constants fRS
T for which R < S.

The number λ is related to the undetermined constant a in the invariant metric of

cs(2, 1, 1) and cso(3, 0, 1) by 2λ = a +
√
a2 + 4. Since the function x 7→ x +

√
x2 + 4 is

one-to-one from IR to the set of positive real numbers, the number λ can be considered an

arbitrary positive real number.

The totally antisymmetric tensors fABC = fAB
DηDC of cso(3, 0, 1) are more easily

displayed in tensor form:

fABC = −(λ2 + 2)εABC , fABI = −εAB(I−6) ,

fAIJ = λ2εA(I−6)(J−6) , fIJK = (2λ2 + 1)ε(I−6)(J−6)(K−6) ,
(B.1)

where εabc = +1(−1) if (abc) is an even (odd) permutation of (123), and otherwise it is

zero.
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[16] L. Andrianopoli, F. Cordaro, P. Fré’ and L. Gualtieri, Non-semisimple gaugings of D = 5

N = 8 supergravity and FDAS, Class. and Quant. Grav. 18 (2001) 395 [hep-th/0009048].

[17] L. Andrianopoli, R. D’Auria, S. Ferrara and M.A. Lledo, Gauging of flat groups in four

dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206].

[18] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, hep-th/0603057.

[19] D.Z. Freedman and J.H. Schwarz, N=4 supergravity theory with local SU(2)× SU(2)

invariance, Nucl. Phys. B 137 (1978) 333.

– 19 –

http://jhep.sissa.it/stdsearch?paper=05%282006%29034
http://arxiv.org/abs/hep-th/0602024
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB255%2C515
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB262%2C644
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB262%2C644
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB390%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB390%2C3
http://arxiv.org/abs/hep-th/9207016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB148%2C297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB142%2C39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB253%2C650
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB253%2C650
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C395
http://arxiv.org/abs/hep-th/0009048
http://jhep.sissa.it/stdsearch?paper=07%282002%29010
http://arxiv.org/abs/hep-th/0203206
http://arxiv.org/abs/hep-th/0603057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB137%2C333

